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a b s t r a c t

The present recommendations have been developed by the Kinetics Committee of the International
Confederation for Thermal Analysis and Calorimetry (ICTAC). The recommendations offer guidance for
reliable evaluation of kinetic parameters (the activation energy, the pre-exponential factor, and the reac-
tion model) from the data obtained by means of thermal analysis methods such as thermogravimetry
(TGA), differential scanning calorimetry (DSC), and differential thermal analysis (DTA). The recommen-
eywords:
rosslinking
rystallization
uring
ecomposition
egradation

dations cover the most common kinetic methods, model-free (isoconversional) as well as model-fitting.
The focus is on the problems faced by various kinetic methods and on the ways how these problems can
be resolved. Recommendations on making reliable kinetic predictions are also provided. The objective of
these recommendations is to help a non-expert with efficiently performing analysis and interpreting its
results.

© 2011 Elsevier B.V. All rights reserved.
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oreword

The development of the present recommendations was ini-
iated by the chairman of the International Confederation for
hermal Analysis and Calorimetry (ICTAC) Kinetics Committee,
ergey Vyazovkin. The initiative was first introduced during the
inetics workshop at the 14th ICTAC Congress (São Pedro, Brazil,
008) and further publicized during the kinetics symposium at the
7th NATAS Conference (Lubbock, USA, 2009). Consistent kinetic
ecommendations had long been overdue and the idea gained a
trong support of the participants of both meetings as well as of
he thermal analysis community in general. The present team of
uthors was collected immediately after the NATAS conference and
ncluded individuals having extensive expertise in kinetic treat-

ent of thermal analysis data. The team was led by Vyazovkin,
ho is listed as the first author followed by other team members

isted in the alphabetical order. The specific contributions were as
ollows: 1. Introduction (Vyazovkin); 2. Data requirements (Burn-
am); 3. Isoconversional methods (Vyazovkin and Sbirrazzuoli);
. The method of Kissinger (Pérez-Maqueda and Criado); 5. The
ethod of Invariant kinetic parameters (Sbirrazzuoli); 6. Determin-

ng reaction models and preexponetial factors (Pérez-Maqueda,
riado, and Vyazovkin); 7. Model-fitting methods (Burnham, Pérez-
aqueda, and José Criado). 8. Kinetic predictions (Popescu). The

rst draft of the document was finished in July, 2010 and was a
esult of extensive discussion and reconciliation of the opinions
f all authors. The draft was presented at the 10th ESTAC Confer-
nce (Rotterdam, the Netherlands, 2010) at the kinetics workshop
rganized by Vyazovkin and Popescu (the chairman of the ICTAC
ommittee on life-time prediction of materials). The presentation
as followed by a two hours discussion during which numerous

uggestions were made by some 20 attendees. The workshop was
nished by encouraging the audience to provide further written
omments on the draft of recommendations. Separately, a number
f experts were approached individually with a similar request. The
ritten comments were received from thirteen individuals.

The collected comments were very supportive, instructive, and
mportant that, however, did not make the task of properly accom-

odating them an easy one. After careful discussion it was decided
o make a good faith effort to accommodate the suggestions as

uch as possible while keeping the final document concise and
onsistent with its major objective. This objective was to provide a
ewcomer to the field of kinetics with pragmatic guidance in effi-
iently applying the most common computational kinetic methods
o a widest variety of processes such as the thermal decomposition
f solids, thermal and thermo-oxidative degradation of polymers,
rystallization of melts and glasses, polymerization and crosslink-

1. Introduction

The previous project by the ICTAC Kinetics Committee was
focused on extensive comparison of various methods for compu-
tation of kinetic parameters [1]. It was a conclusion of the project
that the methods that use multiple heating rate programs (or, more
generally, multiple temperature programs) are recommended for
computation of reliable kinetic parameters, while methods that
use a single heating rate program (or, single temperature program)
should be avoided. The present recommendations result from a new
project by the ICTAC Kinetics Committee. It is still maintained that
only multiple temperature programs methods should be used for
kinetic computations, and expert advice on the efficient use of these
methods is provided.

Kinetics deals with measurement and parameterization of the
process rates. Thermal analysis is concerned with thermally stimu-
lated processes, i.e., the processes that can be initiated by a change
in temperature. The rate can be parameterized in terms of three
major variables: the temperature, T; the extent of conversion, ˛;
the pressure, P as follows:

d˛

dt
= k(T)f (˛)h(P) (1.1)

The pressure dependence, h(P) is ignored in most of kinetic com-
putational methods used in the area of thermal analysis. It should,
however, be remembered that the pressure may have a profound
effect on the kinetics of processes, whose reactants and/or products
are gases. Unfortunately, monographic literature on thermal anal-
ysis rarely mentions the effect of pressure on the reaction kinetics,
which can be represented in different mathematical forms [2–4].
The kinetics of oxidation and reduction of solids depends on the
partial pressure of the gaseous oxidant or reductant. The gaseous
products of decomposition can be reactive toward the decomposing
substance causing autocatalysis as frequently seen in decomposi-
tion of nitro energetic materials. In this case, the local concentration
of the reactive product depends strongly on the total pressure in the
system and can be expressed in the form of the power law [5]:

h(P) = Pn (1.2)

Similar formalism can be suitable for the reactions of oxida-
tion and/or reduction, where P would be the partial pressure of
the gaseous reactant. The rate of reversible decompositions can
demonstrate a strong dependence on the partial pressure of the
gaseous products. If the latter are not removed efficiently from
the reaction zone, the reaction proceeds to equilibrium. Many of
reversible solid-state decompositions follow the simple stoichiom-
etry: Asolid ⇔ Bsolid + Cgas so that the pressure dependence of their
ng, and so on. In keeping with this objective, it was not possible to
nclude detailed recommendations on specific types of processes as

ell as on the methods that were either less common or too new
o gain sufficient usage in the community.
rate can be presented as

h(P) = 1 − P

Peq
(1.3)



S. Vyazovkin et al. / Thermochimica Acta 520 (2011) 1–19 3

Table 1
Some of the kinetic models used in the solid-state kinetics.

Reaction model Code f(˛) g(˛)

1 Power law P4 4˛3/4 ˛1/4

2 Power law P3 3˛2/3 ˛1/3

3 Power law P2 2˛1/2 ˛1/2

4 Power law P2/3 2/3˛−1/2 ˛3/2

5 One-dimensional diffusion D1 1/2˛−1 ˛2

6 Mampel (first order) F1 1 − ˛ −ln(1 − ˛)
7 Avrami–Erofeev A4 4(1 − ˛)[−ln(1 − ˛)]3/4 [−ln(1 − ˛)]1/4

8 Avrami–Erofeev A3 3(1 − ˛)[−ln(1 − ˛)]2/3 [−ln(1 − ˛)]1/3

9 Avrami–Erofeev A2 2(1 − ˛)[−ln(1 − ˛)]1/2 [−ln(1 − ˛)]1/2

10 Three-dimensional diffusion D3 3/2(1 − ˛)2/3[1 − (1 − ˛)1/3]−1 [1 − (1 − �)1/3]2

2/3 1/3
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11 Contracting sphere R3
12 Contracting cylinder R2
13 Two-dimensional diffusion D2

here P and Peq are respectively the partial and equilibrium pres-
ures of the gaseous product C. Although h(P) can take other more
omplex forms, a detailed discussion of the pressure dependence
s beyond the scope of the present recommendations. The latter
oncern exclusively the most commonly used methods that do
ot explicitly involve the pressure dependence in kinetic computa-
ions. This is equivalent to the condition h(P) = const throughout an
xperiment. For pressure dependent reactions, this condition can
e accomplished by supplying a large excess of a gaseous reactant in
as–solid reactions and/or by effectively removing reactive gaseous
roducts in reversible and autocatalytic reactions. If the afore-
entioned condition is not satisfied, an unaccounted variation of

(P) may reveal itself through a variation of kinetic parameters
ith the temperature and/or conversion as frequently is the case

f reversible decompositions studied not far from equilibrium [4].
As already stated, the majority of kinetic methods used in the

rea of thermal analysis consider the rate to be a function of only
wo variables, T and ˛:

d˛

dt
= k(T)f (˛) (1.4)

The dependence of the process rate on temperature is repre-
ented by the rate constant, k(T), and the dependence on the extent
f conversion by the reaction model, f(˛). Eq. (1.4) describes the rate
f a single-step process. The extent of conversion, ˛, is determined
xperimentally as a fraction of the overall change in a physical prop-
rty that accompanies a process. If a process is accompanied by
ass loss, the extent of conversion is evaluated as a fraction of

he total mass loss in the process. If a process is accompanied by
elease or absorption of heat, the extent of conversion is evaluated
s a fraction of the total heat released or absorbed in the process. In
ither case, ˛ increases from 0 to 1 as the process progresses from
nitiation to completion. It must be kept in mind that the physi-
al properties measured by the thermal analysis methods are not
pecies-specific and, thus, usually cannot be linked directly to spe-
ific reactions of molecules. For this reason, the value of ˛ typically
eflects the progress of the overall transformation of a reactant to
roducts. The overall transformation can generally involve more
han a single reaction or, in other words, multiple steps each of
hich has it specific extent of conversion. For example, the rate

f the overall transformation process that involves two parallel
eactions can be described by the following equation:

d˛

dt
= k1(T)f1(˛1) + k2(T)f2(˛2) (1.5)

In Eq. (1.5), ˛1 and ˛2 are the specific extents of conversion
espectively associated with the two individual reactions (steps),

nd their sum yields the overall extent of conversion: ˛ = ˛1 + ˛2.
ore complex multi-step models are discussed in Section 7.
One of the present recommendations is that it is crucial for reli-

ble kinetic methods to be capable of detecting and treating the
3(1 − ˛) 1 − (1 − ˛)
2(1 − ˛)1/2 1 − (1 − ˛)1/2

[−ln(1 − ˛)]−1 (1 − ˛)ln(1 − ˛) + ˛

multi-step kinetics. Note that if a process is found to obey a single-
step equation (Eq. (1.4)), one should not conclude that the process
mechanism involves one single step. More likely, the mechanism
involves several steps but one of them determines the overall kinet-
ics. For instance, this would be the case of a mechanism of two
consecutive reactions when the first reaction is significantly slower
than the second. Then, the first process would determine the over-
all kinetics that would obey a single-step Eq. (1.4), whereas the
mechanism involves two steps.

The temperature dependence of the process rate is typically
parameterized through the Arrhenius equation

k(T) = Aexp
(−E

RT

)
(1.6)

where A and E are kinetic parameters, the preexponential factor
and the activation energy, respectively, and R is the universal gas
constant. It must be kept in mind that some processes have a non-
Arrhenius temperature dependence, an important example being
the temperature dependence of the rate of the melt crystallization
(nucleation) [4]. The experimentally determined kinetic parame-
ters are appropriate to call “effective”, “apparent”, “empirical”, or
“global” to stress the fact that they can deviate from the intrinsic
parameters of a certain individual step. Because of both non-species
specific nature of the thermal analysis measurements and complex-
ity of the processes studied by the thermal analysis techniques, it
proves extremely difficult to obtain intrinsic kinetic parameters of a
step that are not affected by kinetic contributions from other steps
and diffusion. Generally, effective kinetic parameters are functions
of the intrinsic kinetic parameters of the individual steps. For exam-
ple, the effective activation energy is most likely to be a composite
value determined by the activation energy barriers of the individ-
ual steps. As such, it can demonstrate the behavior not typically
expected from the activation energy barrier. For instance, the effec-
tive activation energy can vary strongly with the temperature and
the extent of conversion [6,7] or take on negative values [8].

The temperature is controlled by thermal analysis instruments
in accord with a program set up by an operator. The temperature
program can be isothermal, T = const, or nonisothermal, T = T(t). The
most common nonisothermal program is the one in which the tem-
perature changes linearly with time so that

ˇ = dT

dt
= const (1.7)

where ˇ is the heating rate.
The conversion dependence of the process rate can be expressed

by using a wide variety [9] of reaction models, f(˛), some of which
are presented in Table 1. It should be remembered that most of

these models are specific to the solid-state reactions. That is, they
may have a very limited (if any) applicability when interpreting the
reaction kinetics that do not involve any solid phase. It is always
useful to make sure whether a solid substance would react in the
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relationships between the process rate, the extent of conversion,
ig. 1. Characteristic ˛ vs. t “reaction profiles” for (1) accelerating, (2) decelerating,
nd (3) sigmoidal models.

olid state when heated. On heating, before a reaction starts a solid
rystalline substance can melt or a solid amorphous substance can
ndergo the glass transition so that in either case the reaction
ould take place in the liquid phase. At any rate, one should be

dvised to use the reaction models appropriate to the process being
tudied.

Although there is a significant number of reaction models, they
ll can be reduced to three major types: accelerating, decelerating,
nd sigmoidal (sometimes also called autocatalytic). Each of these
ypes has a characteristic “reaction profile” or “kinetic curve”, the
erms frequently used to describe a dependence of ˛ or d˛/dt on t or
. Such profiles are readily recognized for isothermal data because
n this case k(T) = const in Eq. (1.4) so that the kinetic curve shape
s determined by the reaction model alone. However, under non-
sothermal conditions both k(T) and f(˛) vary simultaneously giving
ise to sigmoidal ˛ vs. T curves that makes it rather difficult to rec-
gnize the reaction model type. The respective isothermal ˛ vs. t
eaction profiles are shown in Fig. 1. Accelerating models represent
rocesses whose rate increases continuously with increasing the
xtent of conversion and reaches its maximum at the end of the
rocess. Models of this type can be exemplified by a power–law
odel:

(˛) = n˛(n−1)/n (1.8)

here n is a constant. Models of the decelerating type represent
rocesses whose rate has maximum at the beginning of the process
nd decreases continuously as the extent of conversion increases.
he most common example here is a reaction-order model:

(˛) = (1 − ˛)n (1.9)

here n is the reaction order. Diffusion models (Table 1) are another
lass of decelerating models. Sigmoidal models represent processes
hose initial and final stages demonstrate respectively the acceler-

ting and decelerating behavior so that the process rate reaches its
aximum at some intermediate values of the extent of conversion.

he Avrami–Erofeev models

(˛) = n(1 − ˛)[−ln(1 − ˛)](n−1)/n (1.10)
rovide a typical example of the sigmoidal kinetics. Only those
inetic methods that are capable of treating all three types of the
ica Acta 520 (2011) 1–19

conversion dependencies can be recommended as reliable meth-
ods. Sestak and Berggren [10] have introduced an empirical model:

f (˛) = ˛m(1 − ˛)n[−ln(1 − ˛)]p (1.11)

that depending on the combination of m, n, and p can repre-
sent a number of different reaction models. It is normally used in
truncated form (p = 0 in Eq. (1.11)) that is sometimes also called
extended Prout–Tompkins model (the regular Prout–Tompkins
model is f(˛) = ˛(1 − ˛)). The truncated Sestak–Berggren model is
an example of an autocatalytic model.

Combining Eqs. (1.4) and (1.6) yields:

d˛

dt
= Aexp

(−E

RT

)
f (˛) (1.12)

The resulting equation provides a basis for differential kinetic
methods. In this form, the equation is applicable to any tempera-
ture program, be it isothermal or nonisothermal. It also allows for
substitution of the actual sample temperature variation, T(t), for
T that can be useful when the sample temperature deviates sig-
nificantly from the reference temperature (i.e., temperature of the
furnace). For constant heating rate nonisothermal conditions, Eq.
(1.12) is frequently rearranged as:

ˇ
d˛

dT
= Aexp

(−E

RT

)
f (˛) (1.13)

Introduction of the explicit value of the heating rate reduces
the applicability of Eq. (1.13) to processes in which the sample
temperature does not deviate significantly from the reference tem-
perature.

Integration of Eq. (1.12) leads to:

g(˛) ≡
∫ ˛

0

d˛

f (˛)
= A

∫ t

0

exp
(−E

RT

)
dt (1.14)

where g(˛) is the integral form of the reaction model (Table 1). Eq.
(1.14) lays a foundation for a large variety of integral methods. In
this form, Eq. (1.14) is applicable to any temperature program that
can be introduced by replacing T with T(t). This also means that
one can use this equation to introduce in kinetic calculations the
actual sample temperature variation, T(t), which is helpful in the
situations when the sample temperature demonstrates significant
deviation from the reference temperature. For constant heating rate
conditions, the integral with respect to time is usually replaced with
the integral with respect to temperature:

g(˛) = A

ˇ

T∫
0

exp
(−E

RT

)
dT (1.15)

This rearrangement introduces the explicit value of the heat-
ing rate in Eq. (1.15) that means that the application area of the
equation is limited to the processes, in which the sample tempera-
ture does not deviate significantly from the reference temperature.
Because the integral in Eq. (1.15) does not have an analytical solu-
tion, a number of approximate solutions were offered in the past.
These approximations gave rise to a variety of approximate integral
methods. The approximate methods were developed in the early
years when neither computers nor software for numerical integra-
tion were widely available. Modern integral methods make use of
numerical integration that allows one to solve the integrals with
very high accuracy.

From the computational standpoint, the purpose of kinetic anal-
ysis of thermally stimulated processes is to establish mathematical
and the temperature. This can be accomplished in several ways. The
most straightforward way is determining a kinetic triplet, which is
a term frequently used to describe a single set of A, E, and f(˛) or
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(˛). For a single-step process, evaluating a single kinetic triplet and
ubstituting it into Eq. (1.12) or (1.14) should be sufficient to pre-
ict the process kinetics for any desired temperature program, T(t).
ulti-step kinetics are predicted by determining several kinetic

riplets (one per each reaction step) and substituting them into a
espective rate equation, such as Eq. (1.5).

Kinetic analysis can have either a practical or theoretical pur-
ose. A major practical purpose is the prediction of process rates
nd material lifetimes. The predictions are reliable only when
ound kinetic analysis methods are used. The theoretical purpose
f kinetic analysis is interpretation of experimentally determined
inetic triplets. Each of the components of a kinetic triplet is asso-
iated with some fundamental theoretical concept. E is associated
ith the energy barrier, A with the frequency of vibrations of the

ctivated complex [8], and f(˛) or g(˛) with the reaction mechanism
9]. It is recommended that such interpretations of experimentally
etermined kinetic triplets be made with extreme care. It should
e remembered that the kinetic triplets are determined by first
electing a rate equation and then fitting it to experimental data.
s a result, meaningful interpretability of the determined triplets
epends on whether the selected rate equation captures adequately
he essential features of the process mechanism. Note that the
ssue of the adequateness of a rate equation to a process mech-
nism goes far beyond the issue of the goodness of statistical fit,
ecause an excellent data fit can be accomplished by using a phys-

cally meaningless equation such as that of a polynomial function.
he adequacy of a rate equation to represent a process mechanism
s primarily the issue of knowing and understanding the process

echanism. For example, a single-step rate equation cannot gen-
rally be adequate for a multi-step mechanism. However, it can
rovide an adequate kinetic representation of a multi-step process
hat has a single rate-limiting step.

The following sections provide recommendations on the appli-
ation of the most common model-fitting and model-free methods
s well as on their use for the purpose of kinetic predictions.

. Data requirements

The first requirement for kinetic analysis is to have high quality
ata. Although measurement methods are not covered by these
ecommendations, a few of the important required attributes of
he resulting data are highlighted. Preprocessing methods are also
iscussed briefly.

.1. Effect of temperature errors

The temperature used in the kinetic analysis must be that of
he sample. Thermal analysis instruments control precisely the so-
alled reference (i.e., furnace) temperature, whereas the sample
emperature can deviate from it due to the limited thermal con-
uctivity of the sample or due to the thermal effect of the process
hat may lead to self-heating/cooling. This problem is more severe
ith larger sample masses and faster heating rates (or higher tem-
eratures), so tests are advisable to demonstrate that there is no
ample mass dependence. This is easily tested by performing runs
n samples of two markedly different masses (e.g., 10 and 5 mg) and
aking sure that the obtained data give rise to the kinetic curves

hat can be superposed or, in other words, are identical within
he experimental error. Otherwise, the sample mass needs to be
ecreased until the superposition is accomplished.

Some computational methods rely on the reference temper-

ture. For example, if a kinetic method uses the value of ˇ in
omputations, it assumes that a sample obeys the temperature
ariation predetermined by the value of the heating rate, i.e., the
ample temperature does not practically deviate from the reference
ica Acta 520 (2011) 1–19 5

temperature. In such situation, one should verify this assumption
by comparing the sample and reference temperatures. Both values
are normally measured by modern thermal analysis instruments.
Typical approaches to diminishing the deviation of the sample tem-
perature from the reference temperature are decreasing the sample
mass as well as the heating rate (constant heating rate nonisother-
mal runs) or temperature (isothermal runs). Alternatively, one can
use kinetic methods that can account for the actual variation in the
sample temperature.

Temperature errors have two types of effects on kinetic
parameters and the resulting kinetic predictions [11]. A constant
systematic error in the temperature will have a minor effect on the
values of A and E, and the predictions will be off by roughly the same
amount as the original temperature error, even if the predictions
are far outside the temperature range of measurement. A system-
atic error that depends upon heating rate is far more important,
and only a few degrees difference in error between the high and
low heating rates can cause an error of 10–20% in E and ln A. Such
an error might occur, for example, because the difference in sample
and reference temperature becomes larger at faster heating rates.
Consequently, it is important that the temperature be calibrated or
checked at every heating rate used. When kinetic predictions are
made within the temperature range of measurement, their error
is only as large as the average temperature error. However, if the
prediction is made outside the temperature range of calibration,
the error in prediction can be enormous. Understanding the pur-
pose of the kinetic parameters helps define the required accuracy
of temperature measurement.

Although kinetic parameters can be determined from data
obtained from only two different temperature programs, the use
of at least 3–5 programs is recommended. Three different temper-
atures or heating rates can detect a non-Arrhenius temperature
dependence, but the accuracy of the Arrhenius parameters is dom-
inated by the extreme temperatures or heating rates, so replication
of the runs at least at those extremes is imperative. The actual
range of temperatures and/or heating rates needed in each situ-
ation depends on the measurement precision available and on the
required accuracy of the kinetic parameters. For example, a ±1 ◦C
error in temperature measurement leads to a 5% error in E and ln A
if the temperature range related to a given conversion is ∼40 ◦C.
Since a doubling of heating rate typically causes the kinetic curve
to shift by about 15 ◦C, a sixfold variation in heating rate would be
required for this level of precision.

2.2. Differential vs. integral data

All experimental data have noise. The amount of noise can affect
the choice of kinetic analysis method. For example, integral and
differential methods are best suitable for respectively analyzing
integral (e.g., TGA) and differential (e.g., DSC) data, especially if the
data points are sparse. However, good numerical integration and
differentiation methods are available to convert integral data to
differential data and vice versa as long as the data do not contain
too much noise and are closely spaced (e.g., hundreds to thousands
of points per kinetic curve). This condition is usually satisfied for
modern thermal analysis equipment. Differentiating integral data
tends to magnify noise. Data smoothing is a possibility, but the pro-
cedure must not be used uncritically. Smoothing may introduce a
systematic error (shift) in the smoothed data that would ultimately
convert into a systematic error in the values of kinetic parameters.
As an extreme smoothing procedure, the noisy data can be fitted to
some mathematical function so that the resulting fitted curve can

then be used for determining kinetic parameters. A good example
of such a function is the Weibull distribution function that is capa-
ble of fitting various kinetic curves. However, such an approach
should be used with caution. While flexible, the Weibull distribu-
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ion function can distort the kinetic parameters by inexact kinetic
urve matching and by smoothing out real reaction features.

Although differential data are more sensitive to revealing reac-
ion details, their kinetic analysis involves an additional problem
f establishing a proper baseline. For nonisothermal conditions,
his is rather non-trivial problem because the baseline DSC signal is
etermined by the temperature dependence of the heat capacities
f all individual reactants, intermediates, and products as well as
y their amounts that change continuously throughout a process.
hermal analysis instrument software typically offers several types
f the baseline corrections (e.g., straight line, integral tangential,
nd spline). The choice of a baseline may have a significant impact
n the kinetic parameters, especially those associated with the ini-
ial and final stages of a process. It is, therefore, recommended that
ne repeats kinetic computations by using different baselines to
eveal the effect of the baseline choice on the kinetic parameters.
ince the present recommendations are concerned with compu-
ational methods that use multiple temperature programs, it is
ecommended to synchronize the baseline corrections of individual
uns with each other by using the same type of a baseline for each
emperature program. Also, by assuming that the thermal effect of a
rocess is independent of the temperature program, the individual
aselines should be adjusted so that the thermal effects obtained
or different temperature programs demonstrate minimal devia-
ions from each other [12]. However, care must be exercised not to
orce the data into this assumption because some multi-step pro-
esses can demonstrate a systematic change in the value of the
hermal effect with a change in the temperature program (see [13]
nd references therein).

Integral TGA data obtained under the conditions of continuous
eating also require a baseline correction for the buoyancy effect
hat reveals itself as an apparent mass gain. However, this correc-
ion is quite straightforward. It is accomplished by first performing
blank TGA run with an empty sample pan and then subtracting

he resulting blank TGA curve from the TGA curve measured by
aving placed a sample in this pan. The blank and sample run must
bviously be measured under identical conditions.

.3. Isothermal vs. constant heating rate runs

It is frequently asked whether isothermal or constant heating
ate experiments are better. The answer is that both have advan-
ages and disadvantages. In fact, strictly isothermal experiments
re not possible, because there is always a finite nonisothermal
eat-up time (usually a few minutes). The biggest disadvantage of

sothermal experiments is a limited temperature range. At lower
emperatures, it may be very difficult to reach complete conver-
ion over a reasonable time period. At higher temperatures, the
eat-up time becomes comparable to the characteristic time of the
rocess, which means a significant extent of conversion is reached
efore the isothermal regime sets in. This situation may be practi-
ally impossible to avoid, especially when a process demonstrates
he decelerating kinetics (Eq. (1.9)), i.e., its rate is the fastest at ˛ = 0.
hen, the non-zero extent of conversion reached during the non-
sothermal heat-up period should be taken into account. It can be
eadily accounted for in differential kinetic methods (Eq. (1.12))
s well as in the integral methods that perform integration over
he actual heating program (i.e., when T = T(t) in Eq. (1.14)). How-
ver, this situation cannot be accounted for in the integral methods
hat integrate Eq. (1.14) assuming strictly isothermal program (i.e.,
= const) giving rise to Eq. (3.5). Such methods would unavoid-
bly suffer from computational errors due to the non-zero extent

f conversion reached during the nonisothermal heat-up period.

The problem of non-zero conversion is easy to avoid in constant
eating rate experiments by starting heating from the tempera-
ure that is well below the temperature at which a process becomes
ica Acta 520 (2011) 1–19

detectable. It can generally be recommended to start heating no less
than 50–70 ◦C below that temperature [14]. The biggest disadvan-
tage of constant heating rate experiments is that it is more difficult
to identify acceleratory and sigmoidal models and, in particular, the
induction periods associated with this type of models. In contrast,
the induction periods in an isothermal experiment are hard to miss
as long as the sample heat-up time is much shorter than the charac-
teristic reaction time. At any rate, best practice would be to perform
at least one isothermal run in addition to a series of constant heating
rates runs. The isothermal run would be of assistance in selecting
a proper reaction model. As mentioned in Section 1, each of the
three model types can be easily recognized from isothermal kinetic
curves (Fig. 1). It would also help to verify the validity of kinetic
triplets derived from the constant heating rate runs by checking if
they can be used to satisfactorily predict the isothermal run. Note
that experimental data do not have to be restricted to isothermal or
constant heating rate conditions. Numerical methods are available
to use any combination of arbitrary temperature programs. In fact,
a combination of nonisothermal and isothermal experiments is the
best way to properly establish kinetic models. A truly good model
should simultaneously fit both types of runs with the same kinetic
parameters. It should be stressed that the necessary requirement
for assessing the validity of a kinetic model fit is a comparison of the
measured and calculated reaction profiles, either rates, or extents
of conversion, or both. Only by showing good correspondence using
the same kinetic parameters over a range of temperatures and/or
heating rates can the parameters have any credence whatsoever.

3. Isoconversional methods

3.1. General idea

All isoconversional methods take their origin in the isoconver-
sional principle that states that the reaction rate at constant extent
of conversion is only a function of temperature. This can be easily
demonstrated by taking the logarithmic derivative of the reaction
rate (Eq. (1.4)) at ˛ = const:[

∂ ln(d˛/dt)
∂T−1

]
˛

=
[

∂ ln k(T)
∂T−1

]
˛

+
[

∂ ln f (˛)
∂T−1

]
˛

(3.1)

where the subscript ˛ indicates isoconversional values, i.e., the val-
ues related to a given extent of conversion. Because at ˛ = const, f(˛)
is also constant, and the second term in the right hand side of Eq.
(3.1) is zero. Thus:[

∂ ln(d˛/dt)
∂T−1

]
˛

= −E˛

R
(3.2)

It follows from Eq. (3.2) that the temperature dependence of
the isoconversional rate can be used to evaluate isoconversional
values of the activation energy, E˛ without assuming or deter-
mining any particular form of the reaction model. For this reason,
isoconversional methods are frequently called “model-free” meth-
ods. However, one should not take this term literally. Although the
methods do not need to identify the reaction model, they do assume
that the conversion dependence of the rate obeys some f(˛) model.

To obtain experimentally the temperature dependence of the
isoconversional rate, one has to perform a series of runs with dif-
ferent temperature programs. This would typically be a series of
3–5 runs at different heating rates or a series of runs at differ-
ent constant temperatures. It is recommended to determine the
E˛ values in a wide range of ˛ = 0.05–0.95 with a step of not larger

than 0.05 and to report the resulting dependencies of E˛ vs. ˛. The
E˛ dependence is important for detecting and treating the multi-
step kinetics. A significant variation of E˛ with ˛ indicates that a
process is kinetically complex, i.e., one cannot apply a single-step
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ig. 2. Each single-step rate equation is associated with a single value of ˛ and a
arrow temperature region �T related to it.

ate equation (Eq. (1.4) and/or (1.12)) to describe the kinetics of
uch a process throughout the whole range of experimental con-
ersions and temperatures. Note that the occurrence of a multi-step
rocess does not immediately invalidate the application of the

soconversional principle, although the latter holds strictly for a
ingle-step process. The principle continues to work as a reasonable
pproximation because isoconversional methods describe the pro-
ess kinetics by using multiple single step kinetic equations, each
f which is associated with a certain extent of conversion and a nar-
ow temperature range (�T) related to this conversion (Fig. 2). As a
atter of fact, the E˛ dependencies evaluated by an isoconversional
ethod allow for meaningful mechanistic and kinetic analyses as
ell as for reliable kinetic predictions [4,15].

The isoconversional principle lays a foundation for a large num-
er of isoconversional computational methods. They can generally
e split in two categories: differential and integral. Several of the
ost popular methods of these two categories are discussed in the

ollowing two sections.

.2. Differential isoconversional methods

The most common differential isoconversional method is that
f Friedman [16]. The method is based on the following equation

n
(

d˛

dt

)
˛,i

= ln [f (˛)A˛] − E˛

RT˛,i
(3.3)

Eq. (3.3) can be easily derived by applying the isoconversional
rinciple to Eq. (1.12). As with Eq. (1.12), Eq. (3.3) is applicable to
ny temperature program. At each given ˛, the value of E˛ is deter-
ined from the slope of a plot of ln(d˛/dt)˛,i against 1/T˛,i. The index

is introduced to denote various temperature programs. T˛,i is the
emperature at which the extent of conversion ˛ is reached under
th temperature program. For isothermal temperature programs, i
dentifies an individual temperature. For linear nonisothermal pro-
rams (Eq. (1.7)), i identifies an individual heating rate. In the latter
ase, Eq. (3.3) is frequently used in the following form:
n

[
ˇi

(
d˛

dT

)
˛,i

]
= ln [f (˛)A˛] − E˛

RT˛,i
(3.4)
ica Acta 520 (2011) 1–19 7

The resulting Eq. (3.4) assumes that T˛,i changes linearly with
the time in accord with the heating rate ˇi. That is, one cannot
substitute the actual sample temperature for T˛,i in Eq. (3.4) to
account for effect of self-heating/cooling. However, Eq. (3.3) can
be used for this purpose. It should be noted that both equations
are applicable to the processes that occur on cooling (ˇ < 0) such as
crystallization of melts.

Since the differential isoconversional methods do not make use
of any approximations, they are potentially more accurate than the
integral methods considered in the following section. However, the
practical use of the differential methods is unavoidably associated
with certain inaccuracy as well as with imprecision. Firstly, when
the methods are applied to the differential data such (e.g., DSC and
DTA), significant inaccuracy in the rate values can be introduced
due to the difficulty of determining the baseline [17]. Inaccuracies
also arise when the reaction heat shows a noticeable dependence
on heating rate [13]. As mentioned earlier, the application of the
differential methods to the integral data (e.g., TGA) requires using
numerical differentiation that introduces imprecision (noise) into
the rate data and may also introduce inaccuracy when the noisy
data are smoothed. With these problems in mind, the differen-
tial methods should not be considered as being necessarily more
accurate and precise than the integral methods.

3.3. Integral isoconversional methods

Integral isoconversional methods originate from the application
of the isoconversional principle to the integral equation (1.14). The
integral in Eq. (1.14) does not have an analytical solution for an arbi-
trary temperature program. However, an analytical solution can be
obtained for an isothermal temperature program:

g(˛) = Aexp
(−E

RT

)
t (3.5)

Some simple rearrangement followed by the application of the
isoconversional principle gives rise to Eq. (3.6)

ln t˛,i = ln
[

g(˛)
A˛

]
+ E˛

RTi
(3.6)

where t˛,i is the time to reach a given extent of conversion at
different temperatures Ti. This is an equation for an integral iso-
conversional method for isothermal conditions. The value of E˛ is
determined from the slope of the plot ln t˛,i vs. 1/Ti.

For the commonly used constant heating rate program, Eq.
(1.14) transforms into Eq. (1.15) that does not have an analytical
solution. For this reason, there is a number of integral isoconver-
sional methods that differ in approximations of the temperature
integral in Eq. (1.15). Many of these approximations give rise to
linear equations of the general form [17]:

ln

(
ˇi

TB
˛,i

)
= Const − C

(
E˛

RT˛

)
(3.7)

where B and C are the parameters determined by the type of the
temperature integral approximation. For example, a very crude
approximation by Doyle [18] yields B = 0 and C = 1.052 so that Eq.
(3.7) takes the form also known as the Ozawa [19], and/or Flynn
and Wall [20] equation:

ln(ˇi) = Const − 1.052
(

E˛

RT

)
(3.8)
The crude temperature integral approximation results in inac-
curate values of E˛. A more accurate approximation by Murray and
White gives rise to B = 2 and C = 1 and leads to another popular
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quation that is frequently called the Kissinger–Akahira–Sunose
quation [21]:

n

(
ˇi

T2
˛,i

)
= Const − E˛

RT˛
(3.9)

Compared to the Ozawa–Flynn–Wall method, the
issinger–Akahira–Sunose method offers a significant improve-
ent in the accuracy of the E˛ values. As shown by Starink [17],

omewhat more accurate estimates of E˛ are accomplished when
etting B = 1.92 and C = 1.0008 so that Eq. (3.7) turns into:

n

(
ˇi

T1.92
˛,i

)
= Const − 1.0008

(
E˛

RT˛

)
(3.10)

Since the aforementioned Eqs. (3.7)–(3.10) are equally easy to
olve by applying linear regression analysis, it is recommended to
se the more accurate equations such as (3.9) and (3.10). Eq. (3.8)

s very inaccurate and should not be used without performing an
terative correction procedure for the value of E˛. Examples of such
rocedures can be found in the literature [22,23]. Here, one should
e strongly advised against the frequently encountered practice of
erforming and reporting kinetic analyses based on the concurrent
se of more than one form of Eq. (3.7). The concurrent use of two
r more such equations only reveals the trivial difference in the
˛ values computed by the methods of different accuracy. Since no
inetic information is produced from such comparison, the practice
f the concurrent use of Eqs. (3.7)–(3.10) should be eliminated in
avor of using of only one more accurate equation.

Further increase in the accuracy can be accomplished by using
umerical integration. An example of such approach is integral iso-
onversional methods developed by Vyazovkin [24–26]. For a series
f runs performed at different heating rates, the E˛ value can be
etermined by minimizing the following function [24]:

(E˛) =
n∑

i=1

n∑
j /= i

I(E˛, T˛,i)ˇj

I(E˛, T˛,j)ˇi
(3.11)

here the temperature integral:

(E˛, T˛) =
∫ Ta

0

exp
(−E˛

RT

)
dT (3.12)

s solved numerically. Minimization is repeated for each value of ˛
o obtain a dependence of E˛ on ˛.

All the integral methods considered so far (Eqs. (3.6)–(3.12))
ave been derived for a particular temperature program, e.g.,
q. (3.6) holds when the program is strictly isothermal, Eqs.
3.7)–(3.12), when the temperature changes linearly with the time
n accord with the heating rate ˇ. Integral isoconversional methods
an be made as applicable to any temperature program as the dif-
erential method of Friedman (Eq. (3.3)) is. This is accomplished by
erforming numerical integration over the actual temperature pro-
rams. Eqs. (3.11) and (3.12) are readily adjusted for this purpose.
ndeed, for a series of runs conducted under different tempera-
ure programs, Ti(t), the E˛ value is determined by minimizing the
ollowing function [25]:

(E˛) =
n∑

i=1

n∑
j /= i

J [E˛, Ti(t˛)]

J
[
E˛, Tj(t˛)

] (3.13)

here the integral with respect to the time:∫ ta [ −E
]

[E˛, T(t˛)] =
0

exp ˛

RT(t)
dt (3.14)

s solved numerically. Minimization is repeated for each value of ˛
o obtain a dependence of E˛ on ˛.
ica Acta 520 (2011) 1–19

Performing integration with respect to the time expands sig-
nificantly the application area of integral isoconversional methods.
Firstly, it allows one to account for the effect of self-heating/cooling
by substituting the sample temperature variation for Ti(t). Sec-
ondly, it gives rise to the integral methods that are applicable to
the processes that occur on cooling (ˇ < 0) such as melt crystalliza-
tion. Note that Eqs. (3.7)–(3.11) cannot be used for a negative value
of ˇ. These equations are based on the integration from 0 to T˛ that
always yields a nonnegative value of the temperature integral (Eq.
(3.12)) which if divided over negative ˇ would yield nonsensical
negative values of g(˛) (Eq. (1.15)). On the other hand, Eq. (3.11)
can be easily adjusted to the conditions of cooling by carrying out
integration not from 0 to T˛ but from T0 to T˛ where T0 is the upper
temperature from which the cooling starts. Because T0 > T˛, the
respective temperature integral will be negative and being divided
over negative ˇ will yield physically meaningful positive values of
g(˛).

All integral isoconversional equations considered so far (Eqs.
(3.6)–(3.14)) are based on solving the temperature integral under
the assumption that the value of E˛ remains constant over the
whole interval of integration, i.e., E˛ is independent of ˛. In practice,
E˛ quite commonly varies with ˛ [4,15]. A violation of the assump-
tion of the E˛ constancy introduces a systematic error in the value
of E˛. The error can be as large as 20–30% in the case of strong varia-
tions of E˛ with ˛ [26]. This error does not appear in the differential
method of Friedman and can be eliminated in integral methods by
performing integration over small segments of either temperature
or time. This type of integration is readily introduced into Eq. (3.11)
by computing the temperature integral as

I(E˛, T˛) =
∫ Ta

Ta−�˛

exp
(−E˛

RT

)
dT (3.15)

or into Eq. (3.13) by computing the time integral as:

J[E˛, T(t˛)] =
ta∫

ta−�˛

exp
[ −E˛

RT(t)

]
dt (3.16)

In both cases, the constancy of E˛ is assumed only for small inter-
vals of conversion, �˛. The use of integration by segments yields
E˛ values that are practically identical with those obtained when
using the differential method of Friedman [13,26,27].

It should be stressed that the present overview of isoconver-
sional methods is not meant to cover all existing isoconversional
methods, but to present the major problems and typical approaches
to solving these problems. Among computationally simple meth-
ods, the differential method of Friedman is the most universal one
because it is applicable to a wide variety of temperature programs.
Unfortunately, this method is used rather rarely in actual kinetic
analyses, whereas the most commonly used is the integral method
of Ozawa–Flynn–Wall that has a very low accuracy and limited
to linear heating rate conditions. Integral isoconversional meth-
ods can accomplish the same degree universality as the differential
method, but at expense of relatively complicated computations
(e.g., Eqs. (3.11)–(3.16)). However, for most practical purposes com-
putationally simple integral methods (e.g., Eqs. (3.9) and (3.10))
are entirely adequate. There are some typical situations when one
should consider using either more computationally complex inte-
gral methods or differential methods. First, when the E˛ values vary
significantly with ˛, e.g., when the difference between the maxi-
mum and minimum values of E˛ is more than 20–30% of the average
E˛. To eliminate the resulting systematic error in E˛, one would

have to employ a method that involves integration over small seg-
ments. Second, when the sample temperature deviates significantly
from the reference temperature or, generally, when the experi-
ment is conducted under an arbitrary temperature program. To
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ccount for this difference in integral methods, one would have
o employ a method that makes use of integration over the actual
emperature program. Third, when experiments are conducted
nder linear cooling rate conditions (ˇ < 0). Negative heating rates
an be accounted for by the methods that allow integration to
e carried out from larger to smaller temperature. As mentioned
arlier, all these situations are resolved by using advanced inte-
ral methods (Eqs. (3.11)–(3.16)). However, in the recent literature
everal simplified versions of this approach have been pro-
osed that can provide adequate solutions in the aforementioned
ituations.

.4. Interpreting E˛ vs. ˛ dependencies

Although the isoconversional activation energies can be used
n applications without interpretation, the latter is often desir-
ble for obtaining mechanistic clues or for providing initial
uesses for model fitting methods. If E is roughly constant over
he entire conversion range and if no shoulders are observed
n the reaction rate curve, it is likely that a process is domi-
ated by a single reaction step and can be adequately described
y a single-step model. However, it is more common that
he reaction parameters vary significantly with conversion. If
he reaction rate curve has multiple peaks and/or shoulders,
he E and ln A (for determination of pre-exponential factors
ee Section 6) values at appropriate levels of conversion can
e used for input to multi-step model fitting computations
Section 7).

As far as the mechanistic clues, one should keep in mind that
any thermally initiated processes have characteristic E˛ vs. ˛

ependencies as follows [4,15]. Crosslinking reactions can demon-
trate a change in E˛ associated with vitrification that triggers
switch from chemical to diffusion control. Processes having a

eversible step, such as dehydration, tend to yield a decreasing E˛

s. ˛ dependence that reflects a departure from the initial equilib-
ium. Crystallization of melts on cooling commonly yields negative
alues of E˛ that increase with ˛. In the glass transitions, E˛ can
emonstrate a significant decrease with ˛ as a material converts
rom glass to liquid. Fossil fuels, polymers and other complex
rganic materials tend to have ln A and E increase as conversion
ncreases. This is consistent with the residual material becoming
ncreasingly refractory. Characteristic E˛ vs. ˛ dependencies can
lso be observed for the processes of protein denaturation [28],
elation [29], gel melting [30], and physical aging or structural
elaxation [31].

In addition, the E˛ vs. ˛ dependencies or derived from them E˛

s. T˛ dependencies can be used for model fitting purposes [32,33].
his is done by fitting an experimentally evaluated E˛ vs. ˛ or vs. T˛

ependence to the theoretical one. The latter is derived by applying
q. (3.2) to the rate equation specific to a process being studied
32,33].

. The method of Kissinger

Because of its easy use the Kissinger method [34] has been
pplied for determining the activation energies more exten-
ively than any other multiple-heating rate method. However, the
ethod has a number of important limitations that should be

nderstood. The limitations arise from the underlying assumptions
f the method. The basic equation of the method has been derived
rom Eq. (1.12) under the condition of the maximum reaction rate.

t this point d2˛/dt2 is zero:

d2˛

dt2
=
[

Eˇ

RTm
2

+ Af ′(˛m) exp
( −E

RTm

)](
d˛

dt

)
m

= 0 (4.1)
ica Acta 520 (2011) 1–19 9

where f′(˛) = df(˛)/d˛ and the subscript m denotes the values
related to the rate maximum. It follows from Eq. (4.1) that:

Eˇ

RT2
m

= −Af ′(˛m)exp
( −E

RTm

)
(4.2)

After simple rearrangements Eq. (4.2) is transformed into the
Kissinger equation:

ln

(
ˇ

T2
m,i

)
= ln

(
−AR

E
f ′(˛m)

)
− E

RTm,i
(4.3)

In the Kissinger method, the left hand side of equation (4.3) is
plotted against 1/Tm giving rise to a straight line whose slope yields
the activation energy.

One limitation of the method is associated with the fact that
determination of an accurate E value requires f′(˛m) to be indepen-
dent of the heating rate. Otherwise, the first term in the right hand
side of Eq. (4.3) would not be constant and the plot of ln(ˇ/Tm,i

2)
vs. 1/Tm,i would deviate systematically from a straight line, pro-
ducing a systematic error in E. Strict independence of f′(˛m) on ˇ is
accomplished for a first order kinetic model (F1) because f′(˛) = −1
(see Table 1). Since for other models f′(˛) depends on ˛, a varia-
tion of ˛m with ˇ would result in violating the independence of
f′(˛m) from ˇ. A variation of ˛m with ˇ is negligible for nth-order
and Avrami–Erofeev models (i.e., A1, A2, A3 in Table 1) [35] and
minor for distributed reactivity models [36]. However, ˛m may vary
significantly with ˇ [37–39]. That is the reason why the Kissinger
method should not be generally called “isoconversional” and con-
fused with the isoconversional Kissinger–Akahira–Sunose method
(Eq. (3.9)). Since the Kissinger method yields a reliable estimate of
E only when ˛m does not practically vary with ˇ, the latter con-
dition must be checked by evaluating the ˛m values. A significant
variation of ˛m with ˇ can be detected on visual inspection as a
change in the peak shape with the heating rate [23]. It should be
noted that the magnitude of the systematic error in E decreases
with increasing the E/RT value so that for E/RT values larger than
10 the error in E does not exceed 5% for many reaction models
[37–39].

Another important limitation is that the Kissinger method pro-
duces a single value of the activation energy for any process
regardless of its actual kinetic complexity. As a result, the activa-
tion energy determined can adequately represent only single-step
kinetics (Eq. (1.4)). An adequate representation of the com-
monly encountered multi-step kinetics would normally require
more than a single value of the activation energy. Therefore, it
is necessary to use an isoconversional method to back up the
veracity of the Kissinger estimates. Note that a quick check for
the validity of the single-step assumption can be performed by
comparing the Kissinger estimate against the E value derived
from the slope of the ln(�t1/2) vs. 1/Tm plot, where �t1/2 is the
d˛/dt peak width at its half-height [40]. As long as the single-
step assumption is valid, the two values must be practically
identical.

In addition to the aforementioned limitations, the Kissinger
method is applicable only to the processes that occur under linear
heating rate conditions. Sometimes the method has been used in
the case of nonlinear heating programs such as those observed in so
called Hi-Res TGA experiments. It has been shown [41] that such use
could only be justified when ˛m does not change between different
heating programs. However, typically ˛m varies significantly with
the heating program so that the application of the Kissinger method
results in large errors in the activation energy. Another com-

monly encountered incorrect application of the Kissinger method
is kinetic analysis of data obtained under linear cooling conditions
such as in the case of the melt crystallization. It has been demon-
strated [42] that ˇ in the Kissinger method cannot be replaced with
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positive value of the “cooling rate” and that such practice results
n incorrect values of the kinetic parameters. It is, therefore, recom-

ended that the application of the Kissinger method be generally
imited to the data obtained under linear heating rate conditions.

The Kissinger method can be extended to a simple form of
odel fitting. The A and E values derived from the application of

q. (4.3) imply a specific peak width and asymmetry if the reaction
s first order. Deviations of the measured width and asymmetry
rom that predicted from the first-order model can be used to
stimate reaction parameters for both nucleation-growth [43] and
aussian distributed reactivity [44] models. These parameters are
articularly useful to choose an appropriate model and provide ini-
ial guesses for model fitting by nonlinear regression described in
ection 7.

A note of caution must be made about using the following equa-
ion:

n ˇ = Const − E

RTm
(4.4)

This equation is frequently referred to as the method of Takhor
45] or of Mahadevan [46]. As the Kissinger method, this method
lso relies on the shift in the peak maximum with the heating rate.
owever, the equation was introduced as an approximation [46]

o the Kissinger equation and thus is less accurate. For this reason
t should not be used especially concurrently with the Kissinger

ethod [47]. The Kissinger method particularly when backed up
y isoconversional analysis provides a better option.

. The method of invariant kinetic parameters

The method of invariant kinetic parameters [48] makes use of
he so-called “compensation effect” that is observed when a model-
tting method is applied to a single-heating rate run. Substitution of
ifferent models fi(˛) (Table 1) into a rate equation (e.g., Eq. (1.13))
nd fitting it to experimental data yields different pairs of the Arrhe-
ius parameters, ln Ai and Ei. Although the parameters vary widely
ith fi(˛), they all demonstrate a strong correlation known as a

ompensation effect:

n Ai = aEi + b (5.1)

The parameters a and b depend on the heating rate. The invariant
inetic parameters, ln Ainv and Einv, are evaluated from several sets
f bj and aj obtained at different heating rates ˇj as follows:

j = ln Ainv + Einvaj (5.2)

The method is used rather rarely because it requires more com-
utations than the Kissinger method or most of the isoconversional
ethods. The only seeming advantage that the method offers is

imultaneous evaluation of both lnA and E, but not the reaction
odel. However, as shown in Section 6, there are several quite

imple techniques for evaluating the preexponential factor and the
eaction model once the activation energy has been determined. In
ddition, the aforementioned advantage is outweighed entirely by
he daunting problem of estimating the errors in ln Ainv and Einv.
ecause of the indirect way of evaluating these parameters, the
xperimental error propagates in several steps (first into ln Ai and
i, then into aj and bj, and then into ln Ainv and Einv) that makes it
xtremely difficult to properly evaluate the error in the invariant
inetic parameters.

Overall, when considering this method one should be aware that
impler and more reliable alternatives might be available. There are
everal recommendations for obtaining better values of ln Ainv and

inv. First, before applying the method one needs to test whether
he process under study can be adequately described as single-step
tep kinetics, because only in this case a single pair of ln Ainv and Einv
roduced by this method can be deemed adequate. The test can be
ica Acta 520 (2011) 1–19

done by applying an isoconversional method and making sure that
E˛ does not vary significantly with ˛. Second, one needs to use the
most accurate model fitting methods to obtain better values of ln Ai
and Ei. This is especially important when choosing between numer-
ous integral model-fitting methods whose accuracy in evaluating
ln Ai and Ei depends largely on the accuracy of the approximation
of the temperature integral [17,49,50]. Third, when choosing the
reaction models for calculation of ln Ai and Ei, it is advisable to pick
a set of models that yields a wide range of the ln Ai and Ei val-
ues. The wider the range the smaller the error in determining the
parameters of the compensation effect, a and b. The choice of spe-
cific models also affects the errors in a and b and the quality of
the correlation [51] that can be improved by eliminating the diffu-
sion models [52]. Fourth, it is important to use a wider range of the
heating rates to secure smaller errors in estimating ln Ainv and Einv.

6. Determining reaction models and preexponential factors
for model-free methods

6.1. General idea

The aforementioned model-free methods (e.g., isoconversional,
Kissinger, invariant kinetic parameters) allow one to evaluate the
activation energy without determining the reaction model. How-
ever, this should not be understood to imply that the model-free
methods cannot be used for determining the reaction models. Both
reaction model and preexponential factor can be readily deter-
mined when using model-free methods subject to one important
condition. This condition is that the process can be reasonably
approximated as single-step kinetics or, in other words, can be ade-
quately described by Eq. (1.4). It is recommended that the validity
of this condition is checked by performing isoconversional analy-
sis of the data and making sure that the isoconversional activation
energy does not vary significantly with the extent of conversion.
If this condition cannot be satisfied, then the process cannot be
described adequately by a single reaction model and a single pair
of Arrhenius parameters. Under these circumstances, one is advised
to resort to a multi-step kinetic analysis that would yield an individ-
ual reaction model and a pair of Arrhenius parameters for each of
the reaction steps. Such an analysis can be accomplished by using
the model-fitting methods described in Section 7. The following
sections present some simple and efficient techniques that permit
determination of the reaction model and preexponential factor in
the case when a process has been demonstrated to obey single-step
kinetics.

6.2. Making use of compensation effect

The reaction model and preexponential factor are sometimes
determined by combining the results of a model-free method and
some method that involves model fitting of single heating rate data.
The model-fitting method (e.g., Eq. (1.13) or its integral analog)
yields as many kinetic triplets (Ei, Ai, and fi(˛) or gi(˛)) as the num-
ber of the reaction models used. Then, out of these kinetic triplets
one selects a triplet, whose Ei value matches most closely the activa-
tion energy value, E0, obtained by a model-free method. However,
such approach to determining the reaction models and preexpo-
nential factors cannot be recommended due to its methodological
flaws. First, the single heating rate model-fitting value Ei rarely
matches the model-free value E0 with good accuracy. Second, it
is not uncommon when two or more different fi(˛) or gi(˛) yield

Ei that fit within the confidence limits for E0. Third, for the same
reaction model, the Ei and Ai values tend to change with the heat-
ing rate. All these factors result in inaccurate determination of the
reaction models and preexponential factors.
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nized by the shape of the experimental y(˛) plot. The contracting
Fig. 3. Theoretical g(˛) plots for the reaction models listed in Table 1.

Instead, accurate determination of the reaction model and
reexponential factor can be accomplished [4,53] by using the
forementioned compensation effect (Eq. (5.1)). For this purpose,
he Ei and Ai values are used to determine the a and b parameters
f the compensation effect. Then, substitution of the model-free
ctivation energy into Eq. (5.1) gives a model-free estimate for the
re-exponential factor, A0:

n A0 = aE0 + b (6.1)

It should be noted that the same principle can be used to deter-
ine a dependence of ln A˛ on ˛ by substituting isoconversional

alues of E˛ into Eq. (6.1). However, as mentioned earlier, determi-
ation of the reaction model requires that a variation of E˛ with ˛ to
e negligible so that the E˛ dependence can be replaced with a sin-
le average value, E0. Once both E0 and A0 have been determined,
ne can numerically reconstruct the reaction model in either inte-
ral or differential form. The integral form can be reconstructed
y substituting the values E0 and A0 into Eq. (1.15) that takes the
ollowing form:

(˛) = A0

ˇ

∫ T˛

0

exp
(−E0

RT

)
dT (6.2)

Eq. (6.2) allows one to obtain a set of numerical values of g(˛)
orresponding to different values of ˛. This is accomplished by
sing a dependence of ˛ vs. T measured experimentally at a given
eating rate, ˇ. By substituting a certain experimental value of T˛

i.e., T corresponding to a certain ˛) as the upper limit of the integral
ne obtains a numerical value of g(˛) for the respective value of ˛.
he use of a particular ˇ in Eq. (6.2) obviously requires the use of
he respective experimental ˛ vs. T dependence. Nevertheless, the
esulting numerical values of g(˛) should not demonstrate any sig-
ificant variation with ˇ giving rise to a single dependence of g(˛)
n ˛. The analytical form of the reaction model (i.e., equation) can
hen be established by plotting the numerical g(˛) values against
he theoretical dependencies (Fig. 3) obtained from the g(˛) equa-
ions representing the reaction models (e.g., Table 1) and finding
he best matching theoretical dependence.
The approach used for determining the integral form of the reac-
ion model is equally suitable for determining the differential form.
he values E0 and A0 should then be substituted into rearranged Eq.
 α

Fig. 4. Theoretical y(˛) master plots for the reaction models collected in Table 2.

(1.13):

f (˛) = ˇ
(

d˛

dT

)
a

[
A0exp

(−E0

RT˛

)]−1
(6.3)

The resulting numerical values of f(˛) can then be compared
against the theoretical dependencies obtained from the f(˛) equa-
tions (e.g., Table 1) in order to identify the best matching model.

6.3. The y(˛) and z(˛) master plots

In order to make sure that the y(˛) or z(˛) master plots can be
used, one must use an isoconversional method to determine E˛

and make sure that it does not vary significantly with ˛. Then the
approximately constant value of E˛ can be replaced with an average
value of E0 that is inserted in Eqs. (6.4) or (6.7). The y(˛) function
[54] has the following form:

y(˛) =
(

d˛

dt

)
˛

exp
(

E0

RT˛

)
= Af (˛) (6.4)

Eq. (6.4) is easily arrived at by rearranging Eq. (1.12). The values
of y(˛) are determined directly from experimental data by sub-
stituting E0 into Eq. (6.4). Then, for each value of ˛, one needs to
determine experimental values of (d˛/dt)˛ and T˛ related to this ˛
and insert them into Eq. (6.4). The resulting experimental values
of y(˛) are plotted as a function of ˛ and compared against theo-
retical y(˛) master plots. A suitable model is identified as the best
match between the experimental and theoretical y(˛) master plots.
From a series of experimental kinetic curves (d˛/dt) vs T obtained
at different ˇ one can obtain a series of the experimental y(˛) plots.

The resulting numerical values of y(˛) should not demonstrate
any significant variation with ˇ giving rise to a single dependence
of y(˛) on ˛. As seen from Eq. (6.4), the shape of the theoretical y(˛)
master plots is entirely determined by the shape of the f(˛) func-
tions because A is a constant. However, because the preexponential
factor is yet unknown, the experimental and theoretical y(˛) plots
have to be normalized in a similar manner. For practical reasons,
the y(˛) plots are normalized to vary from 0 to 1. Fig. 4 displays
some examples of the normalized theoretical y(˛) plots for the
models from Table 2. The type of a reaction model can be recog-
geometry models (coded R) yield convex decreasing dependen-
cies. The diffusion models (coded D) demonstrate characteristic
concave decreasing plots. The Avrami–Erofeev models (coded A)
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Table 2
Values of ˛m and ˛p corresponding respectively to the maximum of the y(x) and z(x)
functions for different kinetic models.

Kinetic model ˛m ˛p

R2 0 0.750
R3 0 0.704
F1 0 0.632
A2 0.393 0.632
A3 0.283 0.632
SBa m/(n + m) ?b

D2 0 0.834
D3 0 0.704
D4 0 0.776

a SB stands for the truncated Sestak–Berggren’s equation (Eq. (6.5)).
b There is no general analytical solution for ˛p .

1.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D4
D3

D2
F1

R3
R2

A2

z(
α

)

A3

w
v
S
m

f

a
i
a

g

w
r

z

E
T
m
i
c
i
i
m
z
˛
a
r
t

α

Fig. 5. Theoretical z(˛) master plots for the reaction models from Table 2.

ith n > 1 exhibit a maximum, whose position (˛m) depends on the
alue of n. The same property is demonstrated by the truncated
estak–Berggren (p = 0 in Eq. (1.11)) or extended Prout–Tompkins
odel:

(˛) = ˛m(1 − ˛)n (6.5)

The z(˛) master plots are derived by combining the differential
nd integral forms of the reaction models. The temperature integral
n Eq. (1.15) can be replaced with various approximations [9], �(x)
s follows:

(˛) = AE

ˇR
exp(−x)

[
�(x)

x

]
(6.6)

here x = E/RT. Combining Eqs. (1.12) and (6.6) followed by some
earrangement allows one to introduce the z(˛) function as:

(˛) = f (˛)g(˛) =
(

d˛

dt

)
˛

T2
˛

[
�(x)
ˇT˛

]
(6.7)

It has been established [55] that the term in the brackets of
q. (6.7) has a negligible effect on the shape of the z(˛) function.
hus, the values of z(˛) can be determined for each value of ˛ by
ultiplying the experimental values of (d˛/dt)˛ and T2

˛ . The result-
ng experimental values of z(˛) are plotted as a function of ˛ and
ompared against theoretical z(˛) master plots. A suitable model is
dentified as the best match between the experimental and theoret-
cal z(˛) master plots. From a series of experimental kinetic curves

easured at different ˇ one can obtain a series of the experimental
(˛) plots that should, however, yield a single dependence of z(˛) on

which is practically independent of ˇ. The theoretical z(˛) plots

re obtained by plotting the product f(˛)g(˛) against ˛ for different
eaction models. Fig. 5 shows the theoretical z(˛) master plots for
he models from Table 2.
ica Acta 520 (2011) 1–19

It should be noted that z(˛) plots demonstrate a maximum at a
specific value of conversion, ˛p, that can be found from the condi-
tion [54]

g(˛)f ′(˛) = −1 (6.8)

The ˛p values have been calculated [56] for a number of the
reaction models (Table 2). The values can provide some extra help
in identifying appropriate reaction models for experimental data.
Once the reaction model has been identified, the pre-exponential
factor is determined from the following equation [54]:

A = −ˇE0

RT2
maxf ′(˛max)

exp
(

E0

RTmax

)
(6.9)

In Eq. (6.9), the subscript max denotes the values related to
the maximum of the differential kinetic curve obtained at a given
heating rate.

7. Model fitting methods

7.1. General idea

Model fitting is the derivation of kinetic parameters associated
with a particular reaction model that is assumed to represent the
conversion dependence of the reaction rate. The integral and differ-
ential forms of the reaction model are used in Eqs. (1.4) and (1.14)
for rate and extent of conversion data, respectively. Some common
kinetic models are listed in Table 1. There are many ways model
fitting can be accomplished. They all involve minimizing the differ-
ence between the experimentally measured and calculated data on
the reaction rate. The data can be isothermal, constant heating rate
data, or a mixture of the two. Minimization can be accomplished by
using linear or non-linear regression methods. One key difference
between linear and nonlinear methods is that linear methods do
not need an initial estimate of A and E, while non-linear methods
do. Consequently, even though non-linear methods are superior in
many ways, they greatly benefit from initial estimates provided by
linear methods.

It is very important to understand that the model-fitting
methods differ significantly in their reliability. In particular, model-
fitting based on a single heating rate is known to be notoriously
unreliable [57]. On the other hand, the ICTAC kinetic study [1]
showed that the model fitting methods can be as reliable as the
model-free isoconversional methods as long as the models are
fitted simultaneously to multiple data sets obtained under dif-
ferent temperature programs. Unlike isoconversional methods,
the model-fitting methods are capable of identifying multi-step
reaction models suitable for the description of complex kinetics.
However, this process is associated with a number of nontrivial
problems that are not encountered when using the model-free
methods. Some of these problems are briefly addressed below.

7.2. Picking an appropriate reaction model

The first and most important step in model fitting is to iden-
tify an appropriate model. If this is not done correctly, the kinetic
parameters will be meaningless. It is always wise to start by tak-
ing into consideration the type of a reaction being studied and the
morphology of the reactant (e.g., liquid vs. solid, amorphous vs.
crystalline, shape of crystals and distribution of their sizes, etc.).
This information is helpful in identifying suitable models because

they have typically been derived for specific reaction types and/or
morphologies In addition, a correct model, or limited set of suit-
able models, can usually be identified by inspecting the data and
answering specific questions as follows.
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Table 3
Parameters of Eq. (7.1) fitted to different reaction models f(˛).

Code f(˛) Parameters of equation: c(1 − ˛)n˛m

R2 (1 − ˛)1/2 (1 − ˛)1/2

R3 (1 − ˛)2/3 (1 − ˛)2/3

F1 (1 − ˛) (1 − ˛)
A2 2(1 − ˛)[− ln(1 − ˛)]1/2 2.079(1 − ˛)0.806˛0.515

A3 3(1 − ˛)[− ln(1 − ˛)]2/3 3.192(1 − ˛)0.748˛0.693

D2 [−ln(1 − ˛)]−1 0.973(1 − ˛)0.425˛−1.008

D3 (3(1 − ˛)2/3)/(2[1 − (1 − ˛)1/3]) 4.431(1 − ˛)0.951˛−1.004
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Fig. 6. Normalized reaction rate versus extent of conversion at a constant heating
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. Is there evidence for multiple reactions based on inflection
points and shoulders in the data? Differential data are more
sensitive than integral data for this purpose.

. How does the isoconversional activation energy vary with con-
version?

. Is the reaction of acceleratory, deceleratory, or sigmoidal (auto-
catalytic) type? This is easily decided by visually inspecting
isothermal reaction profiles as each of the reaction types has
a profile of distinctive shape (Fig. 1). As mentioned in Section
1, a link between the shape of nonisothermal reaction profile
and the reaction model type is not nearly as straightforward,
but there are methods of identification based on width of the
reaction profile obtained at multiple heating rates.

. How does the reaction profile shape compare to those for various
possible models? There are several normalized plots that can be
used in this comparison.

If there is evidence for multiple overlapping reactions, a
on-linear regression method is essential. Overlapping parallel
eactions are relatively straightforward to fit by these methods, but
onsecutive reactions are far more difficult. If multiple observables
re available, e.g., weight loss and heat flow, then simultaneous
nalysis of both signals is more likely to result in a unique model.
soconversional kinetic analysis can guide multi-step model opti-

ization. Model-free E and ln A values for ˛ in the vicinity of the
id-conversion of those reaction segments can be used as initial

stimates for the non-linear regression optimization. One should
lways ask, of course, whether development of a multistep model
s beneficial relative to isoconversional kinetics, but it is often the
ase when developing complex chemical process models.

If there is no evidence of multiple reactions from the reaction
rofile at constant heating rates, or if the reactions are sufficiently
eparated such that they can be considered independent reac-
ions, the likelihood of finding an adequate single-step model is
ar greater if the isoconversional analysis indicates that E and ln A
re approximately constant with conversion. Variation of E and ln A
or ˛ < 0.1 and ˛ > 0.9 is not automatically a major concern, because
hose parameters can be affected greatly by possible minor errors
n baseline determination. On the other hand, they should not be
ismissed lightly, as they could indicate, for example, a distinct

nitiation process or a heating rate dependence for the ultimate
mount of reacted material, as in additional carbonaceous residue
rom organic material heated slowly. Note that in the case when
he reaction profile demonstrates well separated steps under con-
tant heating rate conditions, it is a good idea to separate the steps
ntirely (e.g., by using peak separation methods) and analyze their
inetics individually.

The best single-step model or best few candidate models can be
elected by a variety of numerical and graphical methods. Selection
f the method depends upon whether the reaction data is integral
e.g., TGA) or differential (e.g., DSC) and whether the reaction con-
itions are isothermal, constant heating rate, or other. Isothermal
ata suffer from an inherent limitation that there is always an ini-
ial nonisothermal heatup time and that complete conversion may
ot always be determined for methods that measure reaction rates.

For isothermal data, the simplest test is to determine whether
he reaction rate is at its maximum value as soon as the sample
eaches the isothermal temperature. If so, the reaction is decel-
ratory, and a deceleratory model must be used. An appropriate
ethod to narrow the possibilities is to plot the ln(d˛/dt) or

n(1 − ˛) vs time. If the plot is linear for times after the sample is
ruly isothermal, the reaction is first-order or nearly so. If the plot is

oncave downward, the reaction is likely to be a contracting volume
e.g., models 11 and 12 in Table 1). If the plot is concave upward,
he reaction probably has an increasing diffusion resistance (e.g.,

odel 10 or 13 in Table 1) or a reactivity distribution (Table 4).
rate for three reaction orders, n, as defined in Eq. (6.5). The conversion at maximum
rate increases as reaction order decreases. This plot is insensitive to the value of m
in the truncated Sestak–Berggren’s model, which is ∼0.5 for these polymer samples.

If the reaction rate is not at its maximum value when the sample
reaches isothermal conditions, the reaction is sigmoidal or acceler-
atory. If the reaction rate does eventually peak, an Avrami–Erofeev
(models 7–9 in Table 1) or truncated Sestak–Berggren (extended
Prout–Tompkins) (Eq. (6.5)) are appropriate. If the reaction rate
continues to accelerate to the end of the reaction, a power–law
model (models 1–4 in Table 1) should be considered.

For a constant heating rate, a plot of reaction rate versus con-
version can be instructive. Fig. 6 shows how reaction profile shape
changes with reaction order n in Eq. (6.5). The profile shape
is relatively insensitive to the value of m in Eq. (6.5). Instead,
it can be estimated from the width of the reaction profile rel-
ative to that of a first-order reaction having A and E derived
from Kissinger’s equation, as discussed by Burnham [43]. In the
examples shown in Fig. 6, both polystyrene and polyethylene
have narrow reaction profiles characteristic of linear polymers
(m > 0.5 in Eq. (6.5)), but the normalized shape is substantially
different, leading to different values of n. The concept of using
reaction profile shapes has been efficiently implemented in the
y(˛) and z(˛) plots described in Section 6. The use of these plots
can be recommended for picking appropriate reaction models for
model-fitting.

7.3. Linear model-fitting methods
Linear model-fitting methods make use of linear regression
techniques. In order to employ such techniques the rate equation
should be converted to a linear form. This is readily accomplished
for a single-step rate Eq. (1.12) by rearranging and taking the
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Table 4
Four distributed reactivity models used to model the thermal behavior complex
heterogeneous materials.

Name Distribution in Function

Gaussian E D(E) = (2�)−1/2�−1exp[−(E − E0)2/2�2]
nth-order k D(k) = a�k�−1e−ak/� (�)
Weibull E D(E) = (ˇ/	)[(E − 
)/	]ˇ−1exp{−[(E − 
)/	]ˇ}
Discrete E D(E) is any set of weights adding to unity
 α

ig. 7. Fits of Eq. (7.1) (solid lines) to the f(˛) reaction models (dots) listed in Table 3.

ogarithm that makes a plot linear with respect to the reciprocal
emperature. However, linearization of multi-step rate equations
s generally problematic as many of these cannot be linearized.

Linear model-fitting can be performed in a number ways. A good
xample of such method is the combined kinetic analysis [58,59].
t has been proposed for determining the whole kinetic triplet (E,
, and f(˛)) from the simultaneous treatment of several kinetic
urves measured under different arbitrary temperature programs.
n advantage of this method is that the determination of the reac-

ion model is not limited to some list of kinetic models such as that
hown in Table 1 or similar. Instead, the kinetic model is determined
n the following general form:

(˛) = c˛m(1 − ˛)n (7.1)

This can be considered as a modified form of the truncated
quation by Sestak and Berggren (Eq. (6.5)). It has been shown
59] that by adjusting the parameters c, n and m Eq. (7.1) can fit
ery accurately various ideal kinetic models derived under certain
echanistic assumptions. Table 3 provides examples of the values

f the c, n, and m values for some of the ideal models, whereas Fig. 7
hows the examples of the respective fits.

The combined kinetic analysis is based on the following equa-
ion [59]:

n

[
d˛

dt

1
˛m(1 − ˛)n

]
= ln(cA) − E

RT
(7.2)

hat is derived by rearranging the basic Eq. (1.12) and replacing f(˛)
ith the right hand side of Eq. (7.1). Evaluating the parameters of

q. (7.2) requires one to simultaneously substitute kinetic data ˛
nd d˛/dt vs. T obtained at several different temperature programs,
(t). The best fit values of the parameters are considered to be those
hat yield the best linearity of a plot of the left hand side of Eq. (7.2)
gainst the reciprocal temperature. The linearity is evaluated as
he coefficient of linear correlation, r, whose maximum is found

hrough numerical optimization of the parameters n and m. Tak-
ng into consideration that the relative experimental errors in the
inetic data are larger at lowest and highest conversions, it might
e advisable to limit analysis to the ˛ range such as 0.10–0.90 or
Extended
discrete

A and E Same, except ln(A) = a + bE

0.05–0.95. Once the values of n and m that maximize r are found,
the values of E and ln(cA) are estimated respectively from the slope
and intercept of the linear plot.

The found values of n and m should then be checked against the
values specific to the ideal kinetic models (Table 3) to see if the
experimentally evaluated f(˛) matches any of them. For instance,
finding the values of n and m to be respectively around 0.8 and
0.5 means that the experimentally evaluated f(˛) is similar to the
Avrami–Erofeev model, A2. In such a case, the value of c is known
from the previous fits of Eq. (7.1) to specific f(˛) models (Table 3).
This allows one to extract the value of c from ln(cA) and, thus, to
accurately determine the pre-exponential factor. If the values of n
and m do not match the values specific to any of the kinetic models,
the separation of c and A cannot be accomplished. However, since
the value of c is relatively small (Table 3), it does not affect sig-
nificantly the value of the preexponential factor which is typically
reported as log A. It should be noted that even if the experimentally
evaluated f(˛) does not match any ideal kinetic models, it would
still be entirely suitable for describing the effect of the extent of
conversion on the reaction rate.

7.4. Nonlinear model-fitting methods

Fitting of either single or multi-step models is commonly accom-
plished by means of nonlinear regression that works by minimizing
the difference between the measured and calculated data. The
method of least squares evaluates the difference in the form of the
residual sum of squares (RSS):

RSS =
∑

(yexp − ycalc)2 = min (7.3)

The values of yexp can, for example, be the values of the experi-
mentally measured rate (d˛/dt) at different temperature programs.
Then, ycalc would be the rate values calculated by substituting the
variables (e.g., t, T, and ˛) and kinetic parameters (e.g., A and E)
in the right hand side of a rate equation such as Eq. (1.4) or (1.5).
A minimum of RSS is found numerically by varying the values of
the kinetic parameters for the individual reaction steps. Estimates
of the kinetic parameters are obtained as the values that secure a
minimum of RSS.

While some rate equations can be linearized and analyzed by
linear regression, this is generally not as good as using nonlinear
methods. This is because linearization will magnify the sensitiv-
ity of the kinetic parameters to small-value points and distort the
parameters away from doing the best match to the most impor-
tant part of the reaction. In addition, nonlinear regression methods
can easily optimize relative to reaction rates, extents of conver-
sion, or both simultaneously. Furthermore, nonlinear methods can
accommodate any set of differential rate equations by numerical
integration.

Generally the use of the model-fitting methods unavoidably

gives rise to the problems of:

N1. Establishing the uniqueness of the kinetic parameters obtained
for the individual steps.
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tors for a set of parallel first-order reactions [63]. The asymmetry
can also be accounted for by replacing the Gaussian distribution in
S. Vyazovkin et al. / Therm

N2. Selecting a proper multi-step mechanism.
N3. Determining the proper number of individual steps in the
multi-step mechanism.
N4. Selecting proper reaction models for the individual steps.

In order to address the problem N1, one is advised to always
heck whether the kinetic parameters determined by minimiza-
ion of RSS are unique. Nonlinear multi-parametric minimization
s a computationally involved iterative process that may result in
onvergence to local minima rather than a unique global minimum.
ll iterative procedures have to start from some initial “guessed”
alues of the kinetic parameters. Good starting values are obtained
y using isoconversional methods. For example, if the isoconver-
ional E˛ values range from 50 to 150 kJ mol−1, it is reasonable to
se a two-step mechanism and use 50 and 150 kJ mol−1 as the initial
guess” values for E1 and E2 along with their corresponding A1 and
2. As the minimization process converges to a minimum, the val-
es of the kinetic parameters may change markedly with respect
o the initial values. To verify that the evaluated kinetic param-
ters are not associated with some local minimum, one needs to
epeat the process of minimization several times using significantly
ifferent initial values of the kinetic parameters. It is particularly

mportant to test whether the initial values chosen on different
ides of a minimum converge to the same value. For example, if the
nitial value of E was chosen as 50 kJ mol−1 and a minimum was
ound at 100 kJ mol−1, one would be advised to repeat computa-
ions by using the initial value of, say, 200 kJ mol−1 (along with a
orrespondingly appropriate value of A) and make sure that itera-
ions would converge to the same minimum at 100 kJ mol−1. Failure
o accomplish this would mean that the minimization procedure
oes not converge to a global minimum and that the kinetic param-
ters evaluated as a result of minimization are not unique or simply
re incorrect. This situation can be resolved by decreasing the num-
er of individual steps in the multi-step mechanism used as well as
y obtaining additional experimental data, perhaps, trying to cover
wider temperature range, and by improving the computational

lgorithms of minimization.
Addressing the problem N2 requires one to decide which for-

al mechanism (parallel, consecutive, reversible reactions as well
s combinations of thereof) should be used in the model-fitting
ethod. A decision is best reached when one has some information

bout the actual mechanism of the process. When such information
s unavailable, a proper multi-step mechanism is chosen by explor-
ng several alternative mechanisms and finding the one that yields
he lowest value of RSS. In doing so one should not forget about
he statistical nature of RSS. That is, the lowest value of RSS may
ot differ significantly from the second smallest. One is advised to
se the F-test [60] to check whether the difference in the values
f RSS is significant. Note that RSS can be readily converted to the
ariance, S2 as:

2 = RSS

n − p
(7.4)

here n is the total number of experimental points used in the cal-
ulation and p is the total number of kinetic parameters determined
s a result of the calculation. The significance of the difference
n two variances is readily checked by using the regular F-test.
t is not uncommon that a statistical test suggests that there is
o significant difference between two entirely different mech-
nisms (e.g., two parallel vs. two consecutive reactions), which
imply means that both mechanisms provide similar goodness
f fit.
In addressing the problem N3 one needs to decide on the
umber of individual steps to be included in the multi-step
echanism, i.e., to decide, for example, between using three

nd four parallel reactions. Some clues can be obtained from
ica Acta 520 (2011) 1–19 15

inspection of the data. Does the d˛/dt reaction profile look like
a smooth, single peak, or are there shoulders or even multiple
peaks? Each shoulder or peak represents at least one reaction
step. Again, having some mechanistic information can aid greatly
in making a decision. However, one should keep in mind that
the maximum number of steps is restricted by computational
difficulties as well as by limited precision of the experimen-
tal data. Each additional step requires determination of at least
two additional kinetic parameters (A and E). As the number of
parameters increases so does interaction between them (mutual
correlation) that may create significant difficulties in finding the
global minimum in RSS and, thus, in determining a unique set
of the kinetic parameters. One is recommended to introduce a
new step only when this is justified statistically, i.e., only when
this results in a significant decrease in RSS [61]. The significance
is readily verified by applying the F-test to the variances (7.4)
obtained before and after introduction of a new step. It should
be stressed that a decrease in RSS and, thus, the maximum num-
ber of the steps are limited by the intrinsic precision of the data
yexp or, in other words, by the variance due to the experimental
noise.

7.5. Distributed reactivity and regular models

This section provides some recommendations for addressing
the problem N4 which is related to selecting the reaction mod-
els of the individual steps. Because of the obvious differences in
the reaction profiles associated with the major types of the com-
mon reaction models (Fig. 1), determining an appropriate type
is relatively simple. However, it is important to emphasize that
some complex processes do not obey any of the regular models in
Table 1. For example, the thermal degradation of biomass and fos-
sil fuels follow distributed reactivity models, which partition the
overall process into a set of independent, parallel reactions whose
contributions are controlled by the mathematical distribution func-
tion. The respective rate equation takes the following general
form:

d˛

dt
=
∑

wiki(T)fi(˛i) (7.5)

where wi is the relative weight of an individual parallel reac-
tion (�wi = 1 and �˛i = ˛). Commonly used reactivity models are
given in Table 4. Distributed reactivity is often introduced as a
distribution in the activation energies. For the commonly used
Gaussian distribution of activation energies, initial guess for the
mean activation energy E0 and the standard deviation � can be
estimated from the width of the reaction profile relative to that of
a first-order reaction using A and E estimated from the Kissinger
method [36,44]. A computationally efficient method for the non-
linear regression is to partition the continuous E into discrete
E values that are spaced at 2–5 kJ mol−1. A disadvantage of the
Gaussian distribution is that it is symmetric whereas the actual
reactivity distributions tend to be asymmetric. This can be rec-
tified by several methods. One is changing the reaction order of
the individual reactions from 1 to n. Then, the values of n and
� can be used to control the reactivity distribution asymmetry
and the distribution width [62]. It should be noted that introduc-
tion of the nth-order reactions is mathematically equivalent to
introduction of a gamma distribution in the preexponential fac-
E with the Weibull distribution [63]. Finally, distributed reactivity
can also be introduced by using discrete distributions [63], which
are optimized by a nested nonlinear-constrained linear regression
method.
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. Kinetic predictions

.1. General idea

Kinetic predictions are the most important practical application
f kinetic analysis. As mentioned in the introduction, the purpose of
inetic analysis is to parameterize the process rate in terms of such
ariables as the temperature, the extent of conversion, and, some-
imes, pressure. Parameterization is accomplished by evaluating
arameters of the equations that describe the effect of the vari-
bles on the process rate. For example, parameterization in terms
f the temperature and conversion can be accomplished by eval-
ating the kinetic triplet that should be sufficient to quantify the
rocess kinetics at any desired temperature and/or extent of con-
ersion. Of special interest and importance are kinetic predictions
hat deal with quantifying the process kinetics outside the temper-
ture range in which the kinetics was measured experimentally.
he need for kinetic predictions typically arises when experiments
n the temperature range of interest are deemed impractical due to
echnical difficulties, costs and/or time constrain.

One of the most common ways of quantifying the process kinet-
cs is estimating a parameter called the lifetime. The lifetime of a

aterial is the time after which the material loses its properties to
uch extent that it cannot fulfill efficiently the function for which it
as created. All materials change their properties to some extent
hen exposed to heat. Even while stored at ambient temperatures
olymeric materials may outgas plasticizer, losing their mechanical
roperties; drugs may degrade losing their therapeutic properties;
nd energetic materials may decompose, losing their performance
roperties. The process of time-dependent decay of material prop-
rties is frequently called aging. Thermal analysis is widely applied
o study thermal aging, i.e., aging caused by exposure of materi-
ls to heat. It should be stressed that aging may also be caused
y other factors such as pressure, mechanical stress, moisture, etc.
his section addresses only the issue of predicting the life time of
aterials that exclusively undergo thermal aging. It is, therefore,

ssumed that the kinetics of aging can be described in terms of the
quations introduced in Section 1.

Before making lifetime predictions, one needs to link the prop-
rty of interest to a property measured by thermal analysis, e.g.,
ass loss or heat release. It should be kept in mind that in many

ases the link can be rather indirect. For example, TGA is widely
sed to monitor the thermal degradation of polymeric materials.
owever, mass loss measurements would provide limited infor-
ation on the decay of mechanical properties during degradation.

his is because these properties start to decay as soon as the poly-
er chains start breaking, but well before the formation of low
olecular mass volatile products can cause a detectable mass loss

n TGA. Once the decay in the property of interest is linked to mass
oss or heat release, it can be expressed in terms of the extent of con-
ersion, ˛ so that ˛ = 0 represents the initial non-decayed property
nd ˛ = 1 is ultimately decayed property. Then one needs to define
ome limiting extent of decay beyond which the material becomes
nusable, e.g., 5% decay relative to the initial value that would be
quivalent to reaching ˛ = 0.05. Consequently, the problem of the
ifetime prediction reduces to the kinetic problem of computing the
ime to reach the limiting extent of conversion.

.2. Typical approaches to the problem

In the case of a single-step process taking place under isothermal
onditions (constant temperature, T0), the time to reach a given

xtent of conversion can be readily determined by rearranging Eq.
3.5):

˛ = g(˛)
Aexp(−E/RT0)

(8.1)
ica Acta 520 (2011) 1–19

Eq. (8.1) can be used to predict the lifetime of material
under isothermal conditions at the temperature T0. The prediction
requires knowledge of the kinetic triplet for the process that causes
decay in the property of interest. The triplet can be determined
from either isothermal or nonisothermal experiments. It is, how-
ever, critical that the triplet be determined by a kinetic method
that makes simultaneous use of multiple temperature programs.
The use of single heating rate methods for the purpose of kinetic
predictions is unacceptable practice that is generally not capable of
producing meaningful results [57].

Eq. (8.1) is exploited by two popular ASTM methods respectively
designed for evaluating the thermal stability from TGA and DSC
data: E1641 [64] and E698 [65]. The E1641 method is based on the
following predictive equation:

t˛ = −ln(1 − ˛)
Aexp(−E/RT0)

(8.2)

where the value of E is determined by the Flynn and Wall method
(Eq. (3.8)). Eq. (8.2) assumes that the process obeys first-order
kinetics, i.e., g(˛) in Eq. (8.1) is replaced with −ln(1 − ˛). The same
assumption is made to evaluate the pre-exponential factor in Eq.
(8.3):

A = − ¯̌ R

Er
ln(1 − ˛)10a (8.3)

where ¯̌ is the mean of the experimental heating rates used to
determine E by the Flynn and Wall method (Eq. (3.8)). The Er value
is the corrected value of the activation energy that is obtained by
dividing the experimental value of E by the correction factor. Val-
ues for both the correction factor and the parameter a in Eq. (8.3)
are tabulated in the ASTM method.

The E698 method uses the same predictive equation as E1641
(Eq. (8.2)). The value of E is determined either by the Kissinger
method (Eq. (4.3)) or by the Ozawa and Flynn and Wall meth-
ods (Eq. (3.8)). In the latter case, the method suggests replacing
T˛ in Eq. (3.8) with the peak temperature, Tp. The lifetime predic-
tion by the E698 method is again based on the assumption of the
first-order kinetics. The same assumption is used to determine the
pre-exponential factor as

A = ˇE

RT2
p

exp

(
E

RTp

)
(8.4)

The major limitation of both E1641 and E698 methods is that the
lifetime predictions can only be made with the first order kinetic
model and assuming constant activation energy, regardless of the
actual reaction path. This can lead to erroneous predictions when
the process obeys a different reaction model and/or when the pro-
cess demonstrates a significant variation of E˛ with ˛. That is, before
using these methods one should make sure that E˛ does not vary
significantly with ˛ and that the reaction model of the process is
consistent with 1st order kinetics.

The limitations of the ASTM E1641 and E698 methods are
avoided in the model-free predictions that make use of the depen-
dence of E˛ on ˛ determined by an isoconversional method. The
predictive equation was originally proposed [53] in the following
form:

t˛ =

T∫̨
0

exp(−E˛/RT)dT

ˇ exp(−E˛/RT0)
(8.5)
and was later modified to employ data from arbitrary heating pro-
grams, as follows:

t˛ = J[E˛, T(t˛)]
exp(−E˛/RT0)

(8.6)
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Eqs. (8.5) and (8.6) are obtained by equating the right hand
ide of Eq. (3.5) to the right hand side of either Eq. (1.15) or Eq.
1.14) and cancelling the parameter A. The respective predictions
re called “model-free predictions”, because they eliminate the
eaction model g(˛) in the numerator of Eq. (8.1). Because the
odel-free predictions are not limited to a given form of g(˛) and

ecause they are applicable to the processes for which E˛ varies
ith ˛, they generally produce more reliable estimates for the life-

ime, t˛ then the aforementioned ASTM methods.
Although predictions of the lifetime at a given isothermal tem-

erature, T0, are most common, they can also be made for any
esired temperature program, T′(t). Applying the same principle as

n deriving Eqs. (8.5) and (8.6), one obtains a model-free equation:

[E˛, T ′(t′
˛)] = J[E˛, T(t˛)] (8.7)

The right hand side of Eq. (8.7) represents the integral (Eq. (3.14)
r (3.16)) over the actual experimental temperature program. Then
he lifetime t˛

′ at any desired temperature program T′(t) can be
ound as a numerical solution of Eq. (8.7).

Note that the model-free equations ((8.5)–(8.7)) are not the only
ay to make predictions when dealing with multi-step processes

i.e., processes for which E˛ varies with ˛). In this circumstance, the
ifetime predictions can be just as readily made by using multi-step

odel-fitting methods. Since these methods produce an explicit
orm of the rate equation (e.g., Eq. (1.5) or (7.5)), the time to reach
given extent of conversion (i.e., the lifetime, t˛) is determined by
umerical integration of the rate equation that yields the ˛ vs. t
ependence. The predictions can be accomplished for any desired
emperature program T′(t) by integrating the rate equation over
his program. For example, integration of the rate equation over
constant temperature T0 would yield an isothermal prediction

or t˛.

.3. Understanding kinetic predictions

When making kinetic predictions, one should clearly under-
tand that no matter how sophisticated predictive algorithms are,
he resulting predictions are always limited in both precision and
ccuracy. An inherent limit in precision arises from the limited
recision of experimental data (i.e., T, ˛, d˛/dt) that gives rise to
andom errors in the kinetic triplet. It can be easily illustrated by
sing Eq. (8.1) and introducing an error in the activation energy,
± �E. Then the respective error in the lifetime can be expressed

hrough the lower and upper limits of E as:

t˛ = g(˛)
A

[
exp
(

E + �E

RT0

)
− exp

(
E − �E

RT0

)]
(8.8)

rom Eq. (8.8), the relative error in the lifetime is:

�t˛

t˛
= exp

(
�E

RT0

)
− exp

(−�E

RT0

)
(8.9)

It follows from Eq. (8.9) that the relative error in the lifetime
epends on the temperature to which prediction is made. At a cer-
ain value of T0 the relative error would rise above 1 (i.e., above
00%) making the absolute error �t˛ larger than the t˛ value

tself that makes the prediction meaningless. While simplified, this
xample clearly shows that the predictive power is inherently lim-
ted by the precision of experimental data.

The lifetime predictions are also limited in their accuracy. The
redictions are based on a simple assumption that the rate equa-
ion and respective kinetic triplet(s) determined within a certain
xperimental temperature range would remain unchanged in the

emperature range to which the predictions are made. Obviously,
he resulting predictions are only as accurate as the underlying
ssumption. Normally, the latter is reasonably accurate as long as
he temperature range of the predictions does not stretch too far
ica Acta 520 (2011) 1–19 17

beyond the experimental range. However, even a small change in
the temperature can invalidate the underlying assumption when
crossing the temperature of a phase transition. For example, the
kinetic triplet determined for the liquid state decomposition of a
material can be inapplicable to predict the lifetime of this material
below its melting point, i.e., when it decomposes in the solid state.

Another implicit assumption used in kinetic predictions is that
a change in ˛ from 0 to 1 represents the same change in a phys-
ical property measured (e.g., mass loss in TGA or heat release in
DSC) regardless of the heating rate and/or temperature. However,
for some processes a change in the measured property may depend
on the heating rate and/or temperature, a common example being
epoxy curing reactions. When cured at relatively high tempera-
tures and/or heating rates, epoxy materials reach the extent of
cure of ∼100% that is characterized by the limiting glass transition
temperature. Isothermal curing below the limiting glass transition
temperature results in vitrification that effectively stops curing at
some ultimate extent of cure, which is less than 100% and decreases
as one uses progressively smaller temperatures for curing. In this
situation, the use of the higher temperature complete cure kinetics
data would lead to inaccurate predictions of the incomplete cure
kinetics at the lower temperatures, and vice versa. This is simply
because ˛ = 1 corresponds to respectively different absolute extents
of cure under the conditions of complete and incomplete curing.

Also, some inaccuracy of kinetic predictions is associated with
the uncertainty of determining ˛ = 0. Note that Eq. (8.1) derives
from the integral Eq. (1.14) in which the lower limits of integration
are 0. This is equivalent to assuming that the reaction starts when
t and ˛ are zero. However, in practical terms the reaction starts
when it becomes detectable experimentally, i.e., when ˛ reaches
the detection limit, ˛0. At this point t reaches a nonzero value of
t0. The assumption that ˛0 and t0 are negligibly different from zero
gives rise to a systematic error in the predicted life time, t� making
its value shorter by the actual value of t0:

t0 = g(˛0)
k(T)

(8.10)

The size of this error depends on the type of the actual kinetics or
simply on the type of g(˛). Fig. 3 suggests that at ˛0 → 0 the value of
g(˛0) is negligibly small for decelerating kinetics but relatively large
for the kinetics of sigmoidal and accelerating type. For the kinet-
ics of the latter type, the assumption that ˛0 and t0 are negligibly
small may cause significant errors in life-time predictions. Exper-
imentally, these kinetics can be recognized as isothermal kinetic
profiles with a distinct induction period (curves 1 and 3 in Fig. 1).
The value of t0 provides an estimate for the length of the induc-
tion period, which is a period of time during which the reaction
proceeds without a detectable change in the measured physical
property (e.g., mass in TGA or heat flow in DSC). It should be stressed
that the error (i.e., the value of t0) increases quickly with decreasing
temperature (i.e., decreasing k(T) in Eq. (8.10)), which is important
to remember when using accelerated higher temperature tests for
predicting long term lower temperature behavior of materials.

There are several recommendations that should be followed to
improve the precision and accuracy of kinetic predictions. First,
the best possible quality experimental data should be obtained.
It should be remembered that the precision and reproducibility of
raw data ultimately determine the precision of predictions. Second,
the experimental temperature range should be brought as close as
possible to the temperature range of predictions. Minimizing the
gap between these temperature ranges secures the accuracy of pre-
dictions. Third, one should follow the present recommendations

(Sections 3–7) in selecting appropriate computational methods.
Only the methods that avoid unnecessary approximations and
account properly for specifics of a process can produce kinetic
parameters whose quality is adequate to secure the accuracy and
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recision of predictions. Fourth, before making predictions one
hould check whether experimentally evaluated kinetic parame-
ers can be used to reconstruct accurately the experimental data
hat were used to evaluate these parameters. If the reconstructed
inetic curves deviate systematically from the experimental ones,
his deviation is likely to increase significantly when predictions
re made for temperatures that lie outside the experimental range.
ifth, when predictions are based on nonisothermal data, at least
ne isothermal run should be performed to validate the life-time
redictions. The isothermal run is also helpful for identifying the
ype of kinetics (Fig. 1) and, in particular, for alerting one to the
igmoidal and accelerating kinetics with an induction period.

. Conclusions

In conclusion, one can be recommended to follow certain steps
n performing kinetic computations. The first step obviously is
btaining quality kinetic data at no less than three different tem-
erature programs. The second step is to apply an isoconversional
ethod. Obtaining the E˛ vs. ˛ dependence is by itself sufficient for
aking kinetic predictions. If the latter is the sole goal of kinetic

nalysis then further computations may not be necessary. Note,
hat the E˛ vs. ˛ dependence can also be used in model-fitting to
valuate the parameters of a rate equation. Accomplishing other
oals may require evaluating the whole kinetic triplets, which is the
hird step in kinetic computations. Here, the E˛ vs. ˛ dependence
an offer important clues. If E˛ does not vary significantly with ˛,
he process can be adequately described as single-step kinetics,
.e., by a single kinetic triplet. This can be accomplished through
inear model-fitting as well as by employing afore-described meth-
ds for determining reaction models and preexponential factors.
f E˛ varies with ˛, the process has to be described as multiple-
tep kinetics, i.e., by a multiple kinetic triplets. They should be
valuated by the techniques of nonlinear model-fitting, and the
˛ vs. ˛ dependence may provide useful ancillary information
n selecting a particular mechanistic scheme. As the fourth step,
ne is recommended to validate the computed kinetic parameters
y demonstrating that they can be used to satisfactorily predict
reproduce) the experimental kinetic curves from which these
arameters have been computed. Even more rigorous validation

s to test whether the computed kinetic parameters can be used
o predict an experimental kinetic curve not included in kinetic
omputations.
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